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Abstract
We describe a family of quantum spin models which are generators of a discrete
Markovian process. We show that there exists an explicit expression for the
ground state of such models and give a simple argument for the existence of
two types of long-range order in such systems. Two special examples of these
systems are analysed in detail.

PACS numbers: 05.30.−d, 02.50.Ga, 05.50.+q, 05.70.−a

1. Introduction

The existence of long-range order for order parameters in quantum many-body systems is an
important problem which is the first step towards a complete description of the phase diagram.

This problem has been solved for a large class of quantum spin systems of the mean-field
type. These models include the Vonsovsky–Zener type fermion-spin systems [1] explaining
the occurrence of superconductivity and of ferromagnetism at non-zero temperatures. The first
rigorous analysis [1–3] of such systems made use of the so-called approximating Hamiltonian
method. Other methods include large-deviation theory combined with group representations
[4–7] and C∗-algebra analysis [8–10]. Note also that the approximating Hamiltonian method
has been extended to boson systems in [11, 12].

Tian [21] formulated a sufficient condition for the coexistence of two independent order
parameters with long-range order in the ground state of some boson and fermion systems. For
the Hubbard model this condition coincides with the resonating valence bond (RVB) long-
range order and on-site-pairing long-range order. Macris and Piguet [20] proved the existence
of two order parameters for lattice boson–fermion systems at a non-zero temperature by
generalizing [19] the Tian technique in and the Lieb–Simon reflection-positivity technique.
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In this paper, we formulate a special class of quantum spin XZ models on the hypercubic
lattice Zd with a Gibbsian ground state in which long-range order occurs for the spin operators
S1 and S3 in dimensions greater than 1. (In one-dimensional systems ferromagnetic long-range
order for S1 is easy to prove.)

Our systems differ from the XZ spin 1
2 systems which admit Gibbsian ground states

considered in [15]. There, the classical Gibbsian system which generates the ground state is in
fact quite complicated. Kirkwood and Thomas proved that there is ferromagnetic long-range
order for S3 in the ground state in some of their ferromagnetic systems. Our proof of the S1-
long-range order is analogous to theirs. In [16] the Kirkwood–Thomas analysis is formulated
as a fixed-point problem and applied to find quasi-particle states. The method has been further
generalized by Yarotsky [17]. Our analysis is less general but has the advantage of simplicity.

In [18], Matsui showed that in one dimension, classical Gibbsian systems are associated
with quantum Potts systems. The structure of the Matsui Hamiltonians is a special case of the
Hamiltonians of XZ spin systems considered here, which can be represented as a sum of a
diagonal part of a specific form and an Ising-type non-diagonal part.

Our Hamiltonians are expressed in terms of the Pauli matrices

S1 =
(

0 1
1 0

)
S2 =

(
0 −i
i 0

)
and S3 =

(
1 0
0 −1

)
. (1)

Given a finite subset � ⊂ Zd with cardinality |�| let S1
x etc be the corresponding operators on

E� = (C2)� acting on the factor for the point x ∈ �. If we denote for s� ∈ {−1, 1}�,

�0
�(s�) = ⊗x∈�ψ0(sx) where ψ0(1) =

(
1
0

)
ψ0(−1) =

(
0
1

)

then this can be written as

S1
x�

0
�(s�) = �0

�

(
s
{x}
�

)
S3

x�
0
�(s�) = sx�

0
�(s�) (2)

where, for any subset A ⊂ �, sA
� is the configuration s� with the spins in A flipped. (Note

that the states �0
�(s�) form an orthonormal basis for (C2)�. In particular,〈
�0

�(s�)
∣∣�0

�(s�)
〉 = δ(s�; s ′

�) =
∏
x∈�

δsx,s ′
x

where δsx ,s ′
x

is the Kronecker symbol.)
We now define the operators

PA = S1
A − e− α

2 WA(S3
�) S1

A =
∏
x∈A

S1
x (3)

where

WA(s�) = U0
(
sA
�

) − U0(s�) U0
(
sA
�

) = U0(s�\A,−sA). (4)

We tacitly assume that the function U0 satisfy all the conditions needed for the existence of
the thermodynamic limit.

Our main results concern Hamiltonians of the form

H� =
∑
A⊂�

JAPA JA � 0 (5)

In theorem 2.1, we show that their ground state is given by

�� =
∑
s�

e− α
2 U0(s�)�0

�(s�) α ∈ R+. (6)

In the proof we establish that the Hamiltonian (5) is the generator of a discrete Markovian
process. The spectral structure for such generators in the simplest case (|A| = 1) was
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established in [22]. In theorem 2.2, we formulate conditions on JA for which this ground state
is unique. As a simple consequence, we show in theorem 2.3 that in dimensions d > 1, there
are two types of long-range order in these systems.

In the third section, we calculate explicit expressions for the Hamiltonians in the case
JA = 0, |A| > 2 and with the simplest choice of a ferromagnetic U0. The Hamiltonian
corresponding to the case d = 1, JA = 0, |A| > 1 already appeared in [18]. The case
JA = 0, |A| �= 2 is interesting since our Hamiltonian is expressed as a perturbation of the
simple ferromagnetic Hamiltonian

H� = J
∑

〈x,y〉∈�

(
S1

xS
1
y + γ S3

xS
3
y

)
J < 0

where γ = 4d(cosh α)4d−3 sinh α. Our condition of uniqueness of the ground state does not
apply to this case since it does not hold if JA = 0 for all A with |A| �= 2. However, see
remark 2.2.

Remark. The class of Hamiltonians for which (6) is a ground state can be generalized to

H� =
∑

A1,...,Al⊂�

JA(l)

(
PA1 . . . PAl

+ PAl
. . . PA1

)
A(l) = (A1, . . . , Al) (7)

where the summation is over families of disjoint non-empty subsets of �. This follows from
the following equality for an arbitrary A:

PA�� = 0. (8)

2. Main results

We first prove that (6) is a ground state with eigenvalue zero for the Hamiltonian (5).

Theorem 2.1. The Hamiltonian (5) is a positive self-adjoint operator on (C2)� and the state
��, given by (6), is a ground state with eigenvalue zero.

We begin by proving (8). This shows that �� is an eigenfunction of the Hamiltonian (5) with
eigenvalue zero. The identity (8) follows easily by changing signs of the spin variables sA in
the first term:

PA�� =
∑
s�

(
�0

�

(
sA
�

) − e− α
2 WA(s�)�0

�(s�)
)

e− α
2 U0(s�)

=
∑
s�

(
�0

�

(
sA
�

)
e− α

2 U0(s�) − �0
�(s�) e− α

2 U0(s
A
�)

)

=
∑
s�

(
e− α

2 U0(s
A
�) − e− α

2 U0(s
A
�)

)
�0

�(s�) = 0.

Next we prove that the Hamiltonian is a positive operator. For this purpose, we define
two further operators

H +
� = e

α
2 U0(S

3
�)H� e− α

2 U0(S
3
�) H−

� = e− α
2 U0(S

3
�)H�e

α
2 U0(S

3
�). (9)

It is clear that(
H +

�

)∗ = H−
� H−

� = e−αU0(S
3
�)H +

� eαU0(S
3
�). (10)

where the star denotes the adjoint in the Hilbert space E� = (C2)�.
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A straightforward calculation on the basis �0
� shows that

H +
� =

∑
A⊆�

JA e− α
2 WA(S3

�)
(
S1

A − I
)

(11)

where I is the unit operator. This operator is symmetric with respect to the new scalar product〈
F ′∣∣F 〉

U0
= 〈

F ′∣∣ e−αU0(S
3
�)F

〉
. (12)

Indeed, 〈
F ′∣∣H +

�F
〉
U0

= 〈
F ′∣∣ e−αU0(S

3
�)H +

�F
〉

=
∑
A⊆�

JA

〈
F ′∣∣e− α

2 [U0(S
3
�)+U0(S

3A
� )]

(
S1

A − I
)
F

〉

=
∑
A⊆�

JA

〈(
S1

A − I
)
F ′∣∣e− α

2 [U0(S
3
�)+U0(S

3A
� )]F

〉

= 〈
H +

�F ′∣∣F 〉
U0

.

Here we used the equalities

e− α
2 U0(S

3
�)S1

A = S1
A e− α

2 U0(S
3A
� ) e− α

2 U0(S
3A
� )S1

A = S1
A e− α

2 U0(S
3
�) (13)

From these inequalities we derive, also,〈
F ′∣∣H +

�F
〉
U0

= 〈
e− α

2 U0(S
3
�)F ′∣∣H�e− α

2 U0(S
3
�)F ′〉. (14)

This shows that it suffices to prove that H +
� is a positive operator for the new scalar product

(12). Let

F =
∑
s�

F (s�)�0
�(s�)

then (
H +

�F
)
(s�) = −

∑
A⊆�

JA e− α
2 WA(s�)

(
F(s�) − F

(
sA
�

))
. (15)

In deriving this equality one has to once again change the signs of the spins sA in the expansion
of H +

�F on the basis �0
�.

This means that〈
F

∣∣H +
�F

〉
U0

= −
∑
A⊆�

JA

∑
s�

e− α
2 [U0(s�)+U0(s

A
�)]

(
F(s�) − F

(
sA
�

))
F(s�)

= −1

2

∑
A⊆�

JA

∑
s�

e− α
2 [U0(s�)+U0(s

A
�)]

(
F(s�) − F

(
sA
�

))2 � 0. (16)

Here we used the fact that the exponential weight in the sum is invariant under changing
signs of spin variables sA. It now follows that H� is positive definite.

Remark 2.1. The operator H +
� is an analogue of the operator generated by the Dirichlet form

for continuous spins. Its exponent e−tH +
� generates a discrete Markov process which can be

called a generalized spin-flip process. For its adjoint the following relations are valid:

(H−
� F)(s�) =

∑
A⊆�

JA

[
e

α
2 WA(s�)F

(
sA
�

) − e− α
2 WA(s�)F (s�)

] ∑
s�

(H−
� F)(s�) = 0.

The last equality implies the validity of the law of conservation of probability and is derived
after changing signs of spins sA in the first term of the first equality

(
WA

(
sA
�

) = −WA(s�)
)
.
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One expects that this process is characterized by a non-equilibrium phase transition as in
the case of the non-equilibrium system of interacting Brownian oscillators [23].

Uniqueness of the ground state will be derived from the Perron–Frobenius theorem
[13, 14].

Theorem. Let the square matrix B be non-negative and irreducible. Then the spectral radius
ρ(B) is a simple eigenvalue of B and ρ(B) > 0. Moreover, the components of the associated
eigenvector are all strictly positive.

We recall that a matrix is non-negative if all its matrix elements are non-negative, and an
n × n-matrix B is irreducible if there does not exist a subset I ⊂ {1, . . . , n} such that for all
(i, j) ∈ I × I c, the matrix elements Bi,j = 0.

We use this theorem to derive two alternative conditions for uniqueness of the ground
state.

Theorem 2.2. The ground state �� of H� is unique if one of the following conditions is
satisfied:

1. J{x} < 0 for all x ∈ �; or
2. For every pair of points x, y ∈ � there exists a chain x0 = x, x1, . . . , xn = y of points in

� such that J{xi ,xi+1} < 0 and there is a set A ⊂ � with JA < 0 and |A| odd.

Proof. We apply the Perron–Frobenius theorem to the operator −H� + aI , where I is the
identity operator (matrix) and a is a constant given by

a =
∑
A⊂�

JA e− α
2 WA(s�). (17)

Consider first the case J{x} < 0 for all x ∈ �. Suppose that I ⊂ {−1, 1}� is such that〈
�0

�(s ′
�)

∣∣(−H� + aI)�0
�(s�)

〉 = −
∑
A⊂�

JA

〈
�0

�(s ′
�)

∣∣S1
A�0

�(s�)
〉 = 0

∀s� ∈ I, s ′
� ∈ I c. (18)

Since I �= {−1, 1}�, there exists s� ∈ I and x ∈ � such that s ′
� := S1

x�
0
�(s�) =

�0
�

(
s
{x}
�

)
/∈ I . This contradicts (18) since all JA � 0 and J{x} < 0.

Next consider case 2, and assume again that (18) holds. Similar to the previous case, if
s� ∈ I and x, y ∈ � such that J{x,y} < 0 then s

{x,y}
� ∈ I . By flipping pairs of spins in a chain

as in the hypothesis, it then follows that we can flip any pair of spins in s�. We conclude that
I must contain all configurations with an even number of spins sx = −1 or all configurations
with an odd number of minus-spins. However, it is also assumed that there is a set A ⊂ �

with |A| odd and JA < 0. Flipping the spins in A converts a configuration with an odd number
of spins sx = −1 to one with an even number and vice versa. It follows that I must contain all
configurations. �

Remark 2.2. The second condition in case 2 is not superfluous: it follows from the proof
that even if JA < 0 for all A with |A| = 2, there does exist a nontrivial set I satisfying (18).
Indeed, in this case the spaces spanned by �0

�(s�) where #{x : sx = −1} is odd resp. even
are invariant, and the ground state is two-fold degenerate.

One of the most interesting features of the models considered is that they have two order
parameters with long-range order. This is now surprisingly easy to prove.
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Define, for finite subsets A ⊂ Z
d , and operators FA depending on S1

x , S
2
x and S3

x with
x ∈ A,

〈FA〉 = lim
�→Z

d
〈FA〉� 〈FA〉� = (�� |FA��〉

〈��,��〉 (19)

where �� is the ground state. The Gibbsian nature of the ground state then immediately yields
the following theorem.

Theorem 2.3. Suppose that the Hamiltonian H� of a quantum spin system on finite subsets of
the lattice Z

d is given by (5) and that lim�→Z
d WA(s�) exists for all finite A ⊂ Z

d . Suppose
moreover that the limit is bounded if |A| = 2. Then, for d � 1, there is ferromagnetic
long-range order for S1. Moreover, if there is long-range order in the corresponding classical
spin system with the potential energy U0 then such long-range order occurs also for S3 in the
ground state of the quantum system.

Proof. We have to prove that〈
S1

xS
1
y

〉
> a for a > 0. (20)

Writing

Z� = 〈��|��〉 =
∑
s�

e− α
2 U0(s�)

we have 〈
S1

xS
1
y

〉
�

= Z−1
�

∑
s�

e− α
2 U0(s�) e− α

2 Wx,y(s�) � inf
s�,x,y

e− α
2 Wx,y (s�) < +∞.

This proves (20).
Since S3 is a diagonal matrix, the ground-state expectation value of a function of S3

x equals
the classical Gibbsian expectation value of the function depending on classical spins. This
proves the last statement of the theorem. �

Remark 2.3. For short-range interactions the condition for Wx,y of the theorem is always
satisfied. It is well known that for a ferromagnetic nearest-neighbour pair interaction

U0(s�) = −g
∑

〈x,y〉⊆�

sxsy (g > 0) (21)

there is ferromagnetic long-range order in the classical system at sufficiently low temperatures.

3. Examples

In this section, we show that some of the Hamiltonians considered in the previous section have
the following form:

H� = H̃� + H∂� + |�|α0 (22)

where H̃� is a polynomial in S1
x and S3

x ,H∂� is a boundary term and α0 is a constant.
We consider two specific examples.

3.1. Example 1

Put Jx = −1; Jx1,...,xk
= 0, k > 1 and

U0(s�) = −
∑

〈x,y〉∈�

sxsy. (23)
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Then

Wx(s�) = 2sx

∑
y∈�,|y−x|=1

sy. (24)

Let nx be the number of nearest neighbours of x. Then from the simple equality

e−αS = cosh α − S sinh α S2 = I (25)

it follows that (Yk = (y1, . . . , yk))

e− α
2 Wx(S

3
�) =

∏
y∈�,|y−x|=1

e−αS3
xS3

y

=
∏

y∈�,|y−x|=1

(
cosh α − S3

xS
3
y sinh α

)

=
[ nx

2 ]∑
k=1

(sinh α)2k(cosh α)nx−2k
∑

Y2k⊂�,|yj −x|=1

S3
[Y2k]

− S3
x

[ nx−1
2 ]∑

k=0

(sinh α)2k+1(cosh α)nx−2k−1
∑

Y2k+1⊂�,|yj −x|=1

S3
[Y2k+1] + (cosh α)nx

where [n] is the integer part of the number n. The Hamiltonian can therefore be written as

H� = −
∑
x∈�


S1

x −
[ nx

2 ]∑
k=1

αk(nx)
∑

Y2k⊂�,|yj −x|=1

S3
[Y2k]

+

[ nx−1
2 ]∑

k=0

βk(nx)
∑

Y2k+1⊂�,|yj −x|=1

S3
xS

3
[Y2k−1]


 + (cosh α)2d |�| − c∂�

where

αk(n) = (sinh α)2k(cosh α)n−2k

and

βk(n) = (sinh α)2k+1(cosh α)n−2k−1

and

c∂� = (cosh α)d(coshd α − 1)|∂�|
is a boundary term.

It is now evident that (22) holds with α0 = (cosh α)2d and

H̃� = −
∑
x∈�

S1
x − 2dβ0(2d)

∑
〈x,y〉∈�

S3
xS

3
y + α1(2d)

∑
x∈�

∑
Y2⊂�,|yj −x|=1

S3
y1

S3
y2

+
d∑

k=2


αk(2d)

∑
x∈�

∑
Y2k⊂�,|yj −x|=1

S3
[Y2k]

−βk−1(2d)
∑
x∈�

∑
Y2k−1⊂�,|yj −x|=1

S3
xS

3
[Y2k−1]


 . (26)

In the case d = 1 one has in particular, for � = [−L,L],

H̃� = −
∑
x∈�

S1
x − (sinh 2α)

∑
〈x,y〉∈�

S3
xS

3
y + (sinh α)2

∑
x,y∈�,|x−y|=2

S3
xS

3
y (27)
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with a boundary term

H∂� = sinh α(1 − cosh α)
(
S3

−LS3
−L+1 + S3

L−1S
3
L

)
+ 2 cosh α(1 − cosh α).

H̃� is essentially the Hamiltonian introduced by Matsui in [18]. Note that U0 is of the
form (21) so that in dimensions d � 2 there is long-range order of two different kinds by
theorem 2.3.

3.2. Example 2

Put Jx = 0, Jx,y = −1, |x − y| = 1; Jx,y = 0, |x − y| > 1 and let U0 be given by (23).
We first consider the one-dimensional case d = 1.
Since JA = 0 unless A is a pair of nearest neighbour sites, we only need to compute

W{x,x+1}. It is given by the formula (� = [−L,L])

Wx,x+1(s�) = 2((1 − δ−L,x)sx−1sx + (1 − δL,x)sx+1sx+2). (28)

If −L + 1 � x � L − 2 then an application of (25) yields

e− α
2 Wx,x+1(S

3
�) = (

cosh α − S3
x−1S

3
x sinh α

)(
cosh α − S3

x+1S
3
x+2 sinh α

)
= −(cosh α)(sinh α)

(
S3

x−1S
3
x + S3

x+1S
3
x+2

)
+ (sinh α)2S3

x−1S
3
xS

3
x+1S

3
x+2 + (cosh α)2.

We also have

e− α
2 W−L,−L+1(S

3
�) = cosh α − S3

−L+1S
3
−L+2 sinh α

and

e− α
2 WL−1,L(S3

�) = cosh α − S3
L−2S

3
L−1 sinh α.

We thus obtain the following expression for the Hamiltonian:

H� = −
∑

−L�x�L−1

S1
xS

1
x+1 − (cosh α)(sinh α)

∑
−L+1�x�L−2

(
S3

x−1S
3
x + S3

x+1S
3
x+2

)

+ (sinh α)2
∑

−L+1�x�L−2

S3
[(x−1,...,x+2)] − sinh α

(
S3

−L+1S
3
−L+2 + S3

L−2S
3
L−1

)

+ (2L − 2)(cosh α)2 + 2 cosh α. (29)

This is obviously of the form (22) with α0 = (cosh α)2, and bulk Hamiltonian given by

H̃� = −
∑

−L�x�L−1

[
S1

xS
1
x+1 + (sinh 2α)S3

xS
3
x+1

]
+ (sinh α)2

∑
−L+1�x�L−2

S3
[(x−1,...,x+2)]. (30)

Next we analyse the case of arbitrary d. We have, for a bond 〈x, y〉 ∈ �,

Wx,y(s�) = 2
∑

b∈Bo
x,y

sb sb = szsz′ if 〈z, z′〉 = b (31)

and hence

e− α
2 Wx,y(S

3
�) =

∏
〈z,z′〉∈Bo

x,y

e−αS3
z S3

z′ . (32)

where Bo
x,y is the set of bonds stemming from the points x, y excluding the bond 〈x, y〉 itself.

Another application of (25) yields

H� = −
∑

〈x,y〉∈�

S1
xS

1
y +

∑
〈x,y〉∈�





 ∑

Z⊂Nx\{y}
γx(|Z|)S3

[Z]x





 ∑

Z′⊂Ny\{x}
γy(|Z′|)S3

[Z′]y





 (33)
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where Nx = {z ∈ �||x − z| = 1} and Ny{z ∈ �||y − z| = 1}, [Z]x = Z if |Z| is even and
[Z]x = Z ∪ {x} if |Z| is odd, and similarly for [Z′]y and

γx(n) = (cosh α)nx−n−1(sinh α)n (34)

and similarly for γy . This is clearly of the form (22) with α0 = d(cosh α)2(2d−1), and bulk
Hamiltonian given by

H̃� = −
∑

〈x,y〉∈�

[
S1

xS
1
y + γ S3

xS
3
y

]
+

∑
〈x,y〉∈�

2(2d−1)∑
j=2

(−1)j γj

∑
{b1,...,bj }⊂Bo

x,y

S3
[∪bj ] (35)

where

γ = 2(2d − 1)(cosh α)4d−3(sinh α) (36)

and

γj = (cosh α)4d−2−j (sinh α)j (37)

and ∪bj includes x or y if they occur an odd number of times.
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